JURNAL RISET INFORMATIKA P-ISSN: 2656-1743 |E-ISSN: 2656-1735
Vol. 4, No. 3. June 2022 DOI: https://doi.org/10.34288 /jri.v4i3.186

Accredited rank 3 (SINTA 3), excerpts from the decision of the Minister of RISTEK-BRIN No. 200/M/KPT /2020

COMPARATIVE ANALYSIS OF PATHFINDING ARTIFICIAL
INTELLIGENCE USING DIJKSTRA AND A* ALGORITHMS BASED ON RPG
MAKER MV

Riska Nurtantyo Sarbini-1, Irdam Ahmad-2, Romie Oktovianus Bura-3, Luhut Simbolon#

L234Department of Defence Science, Universitas Pertahanan
https://www.idu.ac.id/
riskanurtantyosarbini@gmail.com!, irdam.ahmad@idu.ac.id2, romiebura@idu.ac.id-3,
Isimbolon427 @gmail.com

(*) Corresponding Author

Abstract

In most games, an artificial pathfinding intelligence is required for traversing the fastest discovery. It is
essential for many video games, particularly Role Playing Games (RPGs). The algorithm pathfindings
implemented in this game are A* and Dijkstra Algorithms. This study aims to test an artificial intelligence
system for discovering routes using the A* and Dijkstra algorithms based on RPG Maker MV. The result
showed that from the time obtained, in the experiment on eight nodes using the Pathfinding mechanism of
A* algorithm has faster result in discovering the nearest route with the time 08:15:23 with format (mm:ss:
ms) whereas Dijkstra Algorithm has a 34:47:43 time result. The time record needed represents the distance
between the search nodes. It indicates that the multiple weighting in the impassable nodes caused the cost
calculation process becomes faster and more efficient.

Keywords: Artificial Intelligence; Pathfinding; Dijkstra Algorithm; A* algorithm

Abstrak

Dalam sebagian besar game, kecerdasan buatan fungsi penemu jalan dibutuhkan untuk menemukan tercepat
untuk dilalui hal tersebut penting untuk banyak permainan komputer, khususnya permainan Role Playing
Game (RPG). Algoritma pathfinding yang diimplementasikan pada game ini adalah algoritma A* dan
algoritma Dijkstra. Tujuan dari penelitian ini adalah untuk menguji coba sistem kecerdasan buatan untuk
melakukan pencarian rute menggunakan algoritma A* dan algoritma dijkstra berbasis RPG Maker MV. Hasil
penelitian Dari waktu yang didapatkan, pada percobaan pada 8 titik dengan mekanisme Pathfinding
menggunakan algoritma A* lebih cepat dalam menemukan rute terdekat dengan catatan waktu 08:15:23
format (mm:dd:md) sedangkan menggunakan algoritma Dijkstra 34:47:43, Hal tersebut dikarenakan
pemberian bobot berlipat pada titik yang tidak dapat dilalui hal tersebut menyebabkan proses perhitungan
biaya jalan menjadi lebih cepat dan efisien. Catatan waktu yang dibutuhkan menunjukkan jarak antar titik
pencarian.

Kata kunci: Kecerdasan Buatan; Pathfinding; Algoritma Djikstra; Algoritma A*

INTRODUCTION

When artificial intelligence gets into
various fields, especially game applications, it
presents exciting user experiences (Zhao, 2020).
Artificial Intelligence (AI) is used in games to
provide more exciting and interactive experiences
(Hammedji, Essalmi, Jemni, & Qaffas, 2020). Through
the intelligent technology significant improvement,
artificial intelligence (AI) has been the core
technology for improving the capability in playing a
game, and also as the principal value of the game

promotion that can give more deep experience in
playing game (Tang, Wang, Sima, & Zhang, 2020). Al
is a game's leading component and needs to be
carefully developed and adjusted regularly. The role
affects toward capacity and memory used in a game.
Al is an essential component that often impacts the
success or failure of a game.

Artificial Intelligence (AI) needed for
Pathfinding is assumed to be important in computer
games, particularly in Role Playing games. It has
been the main research area in video games for
decades (Iskandar, Diah, & Ismail, 2020). Usually, it

283

The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License


mailto:lsimbolon427@gmail.com

P-ISSN: 2656-1743 | E-ISSN: 2656-1735
DOI: https://doi.org/10.34288/jri.v4i3.186

JURNAL RISET INFORMATIKA
Vol. 4, No. 3 June 2022

Accredited rank 3 (SINTA 3), excerpts from the decision of the Minister of RISTEK-BRIN No. 200/M/KPT /2020

is used as the core of the artificial intelligence
movement system in computer games. Various Al
fun techniques include the search function, decision
making, intelligent narrative technology, and
character intelligence (Hammedi et al., 2020). In this
situation, the algorithm pathfindings commonly
implemented in a game are Dijkstra and A*
Algorithms.

Dijkstra algorithm is often used to solve
the pathfinding problem using the principle of
determining the first node to the next that keeps
connecting until the target node. The basic of this
algorithm is based on the bandwidth allocation of
nodes (Waleed, Faizan, Igbal, & Anis, 2017). This
algorithm is used to discover the shortest way based
on the most negligible weight starting from the
departure node to the others. For example, the
building and monument as the point and the road as
the lines, so the Dijkstra will calculate entire lines by
the most negligible weight from the greedy
algorithm. It includes the route finder algorithm
used to solve the problem of the shortest way in one
node source that has no negative side cost and
produces the quickest way from the tree. This
algorithm is often used in routing processes
(Wahyuningsih & Syahreza, 2018).

The Dijkstra algorithm works by finding
the most minimal weight of a weighted graph, the
shortest distance will be obtained from two or more
points of a graph, and the total value obtained is the
least. For example, G is a directional graph labeled
with points V(G) = {v1,v2,..,vn} and the shortest path
searched is from v1 to vn. The Dijkstra algorithm
starts from point v1. In its iteration, the algorithm
will look for a single point whose weight amount is
from the smallest point 1. The selected points are
separated and are not noticed again in subsequent
iterations (Maria, Hanna, & Yosefina, 2022).

The research (Harahap & Khairina, 2017)
implemented the Dijkstra algorithm based on the
shortest trajectory operating from the initial or
source node to the destination node. With the node
having a predetermined distance value, the fastest
Path to travel to the target node is determined, as

seen in figure 1 below.

Figure 1. Graph Node Djikstra Aghorithm.

Like the Dijkstra algorithm, the A*
algorithm is another pathfinding method used in
this game to discover the shortest way to prevent
static or dynamic obstacles (Sazaki, Primanita, &
Syahroyni, 2018). A* algorithm is often used for
heuristics finding of an optimal path on the track.
"Heuristics prediction" h(x) provides the best route
prediction through the knot. It visits the nodes in
this order of heuristic estimate (Rachmawati &
Gustin, 2020). To improve their pathfinding ability,
some researchers used the A* algorithm in a Real-
Time Strategy Game (Chen, Shih, & Chen, 2012).

The A* (A Star) algorithm in this study was
used to determine the shortest route that can be
traveled. The Formula that used in the A* (A Star)
algorithm is as follows: F(n) = G(n) + H(n) Where,
F(n) = cost required to move G(n) = costs traveled
from the origin node H(n) = the approximate value
from the current node to the destination node (Hu,
Gen Wan, & Yu, 2012).

The research conducted about the
Implementation of the A*(A Star) Algorithm in
determining the shortest route that NPCs can pass in
games that have succeeded in finding the shortest
route by choosing a course based on the lowest F
Cost. A case-based reasoning method in the A*
algorithm process in multi-task Pathfinding saves
path costs before executing node searches (Li, Su, &
He, 2012). The Calculating Cost Path can be seen in
figure 2 as follows :

24

Figure 2. Calculating Cost Path A* Algorithm.

In this research, an improvement
approach of Artificial Intelligence (Al) is proposed to
analyze the Pathfinding using A* and Dijkstra
algorithms. It aims to test the time effectiveness of
artificial intelligence for Pathfinding in a Role-
Playing game using these two algorithms.

RESEARCH METHODS

284

The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License



JURNAL RISET INFORMATIKA
Vol. 4, No. 3. June 2022

P-ISSN: 2656-1743 |E-ISSN: 2656-1735
DOLI: https://doi.org/10.34288/jri.v4i3.186

Accredited rank 3 (SINTA 3), excerpts from the decisi

on of the Minister of RISTEK-BRIN No. 200/M/KPT/2020

System Development Life Cycle (SDLC) is
used in this system improvement. It is the process of
designing, developing, and testing high-quality
software. SDLC aims to provide a structured flow in
assisting high-quality software production, fulfill the
user expectation, acquire the software life cycle
model, and compare its performance (Saravanan,
Jha, Sabharwal, & Narayan, 2020). One of the most
critical phases of SDLC is the quality assurance or
testing phase (Sinha & Das, 2021).

Types of research

This research is a kind of software
engineering through the SDLC phases of the
waterfall model. The phases are designing,
analyzing, testing, implementing, and analyzing
observation data results (quantitative).

Time and Place of Research

This research was done in March 2022, and
the software construction used computer laboratory
PC desktop on the application was ready. Next are
the installation steps on the smartphone.

Research Target / Subject

The research target is to construct a stable
application on the smartphone and then continue to

Designing
System Analysis

System Design

test the location node search using the pathfinding
mechanism of A* and Dijkstra algorithms.

Procedure

Research procedures started from the
application making and continue to analyze the
nearest route search data that related to the
duration needed to discover the nearest route, and
the explanation can be seen as follows:

Software making is the most critical project
management. The steps that get through the game-
making involve designing, analyzing, designing,
implementing, and testing. Besides, the software
process model is essential to get standards,
especially in digital software making. Creating a
software model for the entire life cycle of software
development (SDLC) by the Waterfall model must be
efficient for the software team to quickly get
productivity (output) of 80% through reduced
software development. Ultimately, it can increase
the software process performance (Igbal & Rizwan,
2009). The software engineering model used the
SDLC with the waterfall model (Trivedi & Sharma,
2013). It can be seen in figure 3 as follows:

]

Implementation

N

.

)

Testing

User
Requirements?

!

Result Analysis }—b( End >

Figure 3. The steps of System Development using the Waterfall Model

b. Determining the program's objectives by
Explanation from figure 3 is as follows: focusing on the specific problems to be solved,
1. Designing that is, designing a stable game.

In this step, system specifications will be c¢. We are determining the components inside the
considered and constructed based on the user game related to the artificial intelligence ability
requirements. There are some tasks classification using A* and Dijkstra algorithms.
that must be done, as follows: 2. System Analysis
a. Itcollected information requirements related to The steps involve:

the constructed system, such as game a. We are identifying the problems of system

observation. description and running system explanation.

285

The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License



P-ISSN: 2656-1743 | E-ISSN: 2656-1735
DOI: https://doi.org/10.34288/jri.v4i3.186

JURNAL RISET INFORMATIKA
Vol. 4, No. 3 June 2022

Accredited rank 3 (SINTA 3), excerpts from the decision of the Minister of RISTEK-BRIN No. 200/M/KPT /2020

Identifying and process analyzing the
requirements of the Role-Playing mechanism.

c. ldentifying the need analysis, such as doing a
system requirements checklist for functional
and non-functional needs towards
implementing artificial game intelligence.

d. It identifies and analyzes alternative solutions
to the system that will be constructed.
3. System Design
In this step, there are some activities as follows:
a. Application architecture design or sitemap.
b. Input and output designs involve identification

and layout making.

c. Process design requires process identification
and system process scenario, then continued in
modeling.

d. Process design involves process identification
and system process scenario, then modeled
using DFD (Data Flow Diagram).

e. Database design involves the identification of

table, entity, and ERD making (Entity Relation
Diagram).

f. Interface design involves interface
identification and creating a layout used.

g. Formulate the Implementation of RPG through
a pathfinding mechanism.
4. Implementation

The database is used to save the input and
output data from the game system. The database
from this application uses RPG Maker MV. The
database design as the knowledge base is the
storage basic concept and game storyline. Database

- EEEEEEE A

L

(=}

Figure 2 shows that the red sentence is the
firstnode of NPC, and the blue one is eight nodes that
will be tested on time required.

Figure 4. Analyze eight-nodts on the

design starts from creating the tables, determining

the keys in each table, and relating one table to

another using the RPG Maker MV program database
application program. This Game creation includes
the database system and editor map.

5. Testing

The testing steps of this research are:

Verification: observing the suitability between

design and result.

Validation: testing the game function suitability

of RPG and the correlation between artificial

intelligence utilization with pathfinding
mechanism.

c. The testing is intended to acquire the
performance of the pathfinding mechanism that
has A* and Dijkstra algorithms function and
observe the results.

Data, Instruments, and Data Collection

Techniques

Processed data are HH:MM: SS, obtained by
the node route search result. There will be
discovering and comparing processes using A* and

Dijkstra algorithms. These aim to observe the level

of time efficiency that is required in the discovery

process. Technically, the comparison is through the
author creating eight nodes to be tested in an entire
map on a mini-game of transportation and also the

NPC that has pathfinding abilities based on A* and

Dijkstra algorithms in the same game but different

algorithms. These eight nodes and NPC positions can

be seen in Picture 4 as follows:

'
(I
!

4

000000000
000000000

Posisi NPC

1
|
|
i
i
'
1
'
{
'
|
|
1
|
|
!
1
{ i =}

map.

Data analysis technique

Quantitative research is the priority
analysis focusing on numbers, from collecting data,
interpreting the data obtained and presenting the
result (Arikunto, 2006). In this research, the author

286

The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License



JURNAL RISET INFORMATIKA
Vol. 4, No. 3. June 2022

P-ISSN: 2656-1743 |E-ISSN: 2656-1735
DOLI: https://doi.org/10.34288/jri.v4i3.186

Accredited rank 3 (SINTA 3), excerpts from the decision of the Minister of RISTEK-BRIN No. 200/M/KPT /2020

used a quantitative technique to analyze the data
through the time data required to reach the point
target. Sixteen data will be obtained based on the
distribution of 8 nodes overall map using the
Dijkstra algorithm and eight nodes using the A*
algorithm.

RESULTS AND DISCUSSION

The ability of artificial intelligence using the
pathfinding method will be located on NPC in

discovering Path, as the first and last nodes where
NPC located on the coordinate of (22,51).

Then, it continues to the initialization
process of value discovery from the start node to the
target (open_nodes, total_cost).

Next, adding node lists to the Open list is
expected to be traversed. It can be seen in Table 1 as
follows.

Table 1. List of Open Nodes Traversed (Coordinate Nodes)

List of Open Nodes Traversed (Coordinate Nodes)

22,22 23,22 24,22 25,22 26,22 27,22 28,22 29,22 30,22
22,23 23,23 24,23 25,23 26,23 27,23 28,23 29,23 30,23
22,24 23,24 24,24 25,24 26,24 27,24 28, 24 29,24 30,24
22,25 23,25 24,25 25,25 26,25 27,25 28,25 29,25 30,25
22,26 23,26 24,26 25,26 26,26 27,26 28,26 29,26 30,26
22,27 23,27 24,27 25,27 26,27 27,27 28,27 29,27 30,27
22,28 23,28 24,28 25,28 26,28 27,28 28,28 29,28 30,28
22,29 23,29 24,29 25,29 26,29 27,29 28,29 29,29 30,29
22,30 23,30 24,30 25,30 26,30 27,30 28,30 29,30 30,30
22,31 23,31 24,31 25,31 26,31 27,31 28,31 29,31 30,31
22,32 23,32 24,32 25,32 26,32 27,32 28,32 29,32 30,32
22,33 23,33 24,33 25,33 26,33 27,33 28,33 29,33 30,33
22,34 23,34 24,34 25,34 26,34 27,34 28,34 29,34 30, 34
22,35 23,35 24,35 25,35 26,35 27,35 28,35 29,35 30,35
22,36 23,36 24,36 25,36 26,36 27,36 28,36 29,36 30,36
22,37 23,37 24,37 25,37 26,37 27,37 28,37 29,37 30,37
22,38 23,38 24,38 25,38 26,38 27,38 28,38 29,38 30,38
22,39 23,39 24,39 25,39 26,39 27,39 28,39 29,39 30,39
22,40 23,40 24,40 25,40 26,40 27,40 28,40 29,40 30,40
22,41 23,41 24,41 25,41 26,41 27,41 28,41 29,41 30,41
22,42 23,42 24,42 25,42 26,42 27,42 28,42 29,42 30,42
22,43 23,43 24,43 25,43 26,43 27,43 28,43 29,43 30,43
22,44 23,44 24,44 25, 44 26, 44 27,44 28, 44 29, 44 30, 44
22,45 23,45 24,45 25,45 26,45 27,45 28,45 29,45 30,45
22,46 23,46 24,46 25,46 26,46 27,46 28,46 29,46 30,46
22,47 23,47 24,47 25,47 26,47 27,47 28,47 29,47 30,47
22,48 23,48 24,48 25,48 26,48 27,48 28,48 29,48 30,48
22,49 23,49 24,49 25,49 26,49 27,49 28,49 29,49 30,49
22,50 23,50 24,50 25,50 26,50 27,50 28,50 29,50 30,50
22,51 | 2351 24,51 25,51 26,51 27,51 28,51 29,51 30,51

The next process is getting the target nodes and
create  direction of  MoveRoute (while
path_x!=src_x|| path_y!=src_y), that is path = ( 2, 2,
2,2,2,4,4,4,4,4,4,4,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,), where the values
are given DOWN = 2, LEFT = 4, RIGHT = 6, UP = 8.
The experiment result of Pathfinding to
observe the level of time-efficient needed in the
discovery process uses the comparison between A*
and Dijkstra algorithms. The analysis results at
node 1 using the Djikstra and A* algorithm were
shown in Figure 5 and Figure 6, respectively. Time
data retrieval was using the JS-Profiler script, which

scripts that serves to perform execution analysis of
the hand used in the game.

Map's get() method

access object property 2108

T T
300 1600
Average execution time [ms]

Figure 5. Execution time at node 1 with Dijkstra
algorithm

287

The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License



P-ISSN: 2656-1743 | E-ISSN: 2656-1735
DOI: https://doi.org/10.34288/jri.v4i3.186

JURNAL RISET INFORMATIKA
Vol. 4, No. 3 June 2022

Accredited rank 3 (SINTA 3), excerpts from the decision of the Minister of RISTEK-BRIN No. 200/M/KPT /2020

Map's get() method

T
200

460
Hverage execution time [ms]
Figure 6. Execution time at node 1 with A*
algorithm

Figure 5 exposed that the execution of the
method took 219 ms and the time to reach the
target was 2108 ms. Thus, the total time needed
was 2327 ms at node 1. Meanwhile, Figure 6
showed that the execution method, which took 127
ms and the time to reach the target, was 486 ms
accordingly if the total time required was 613 ms at
node 1.

Technically, the author will compare by
creating eight nodes that will be tested in the entire
map of transportation mini-game and the NPC that
has the pathfinding ability based on A* and Dijkstra
algorithms in a similar game but different
algorithms. The eight nodes of NPC position can be
seen in Picture 4. The recapitulation result of Table
2 is as follows.

Table 2. Time results were obtained from the eight
target nodes using A* and Dijkstra algorithms.

Numb. Coordinate  Djikstra A*
1 41,31 00:23:27 00:06:13
2 76,29 01:05:46 00:14:08
3 94,18 05:09:01 00:55:12
4 82, 5 10:00:00 02:23:11
5 52,3 10:00:00 03:03:00
6 22,11 04:07:11 00:41:18
7 6, 31 02:03:51 00:17:35
8 24,43 01:59:07 00:15:26

Total Time (mm:ss:ms) 34:47:43 08:15:23

From Table 2, the testing result of the eight
nodes experiment can be concluded that on the NPC
using A* and Dijkstra algorithms methods in 4,5
nodes experiment, and the discovery process needs
extended time. The result may cause more
extensive terrain (obstacle) of a pretty expansive
park among these nodes.

The NPC Dijkstra algorithm of the 4,5 nodes
experiment is stopped (not continued). It is because
of spending a too long time. The experiment process
stopped at 10 minutes because it was not efficient
and would disturb the game application. It might be
caused by the more extensive terrain (obstacle) of a
vast park among these nodes. The graphic
comparison lines can be seen in figure 7 as follows.

288

14:24:00

—@— Djikstra
—0— A*

12:00:00

ms)

09:36:00

o
N
N
g
(=)
S

04:48:00

Time (mm:ss

02:24:00

00:00:00

Node 1
Node 2
Node 3
Node 6
Node 8

Coordination Node

Figure 7. Graphic Comparison Using A* and
Dijkstra algorithms.

Nodes 1,2 were the nearest NPC nodes
where the obstacle level was only other NPC
transportation and some terrain nodes. The A*
algorithm NPC needed some seconds to find the
target coordinate. A similar case was also found on
Dijkstra algorithm NPC. The process nodes of
3,4,5,6 needed a longer time due to the nearest
nodes with the city park in the game. Park has many
terrains of objects NPC characters or transportation
and objects of plants, chairs, pool, and trees.

Meanwhile, using the Dijkstra algorithm
took a long time, so the process stopped at 10
minutes. It was because of spending a very long
time. 7,8 nodes were not quite close to the park but
had long routes. Therefore, the Dijkstra algorithm
needed a longer time than the A* algorithm.

CONCLUSIONS AND SUGGESTIONS

Conclusion

According to the time obtained, the
experiment of 8 nodes using the A* algorithm
Pathfinding mechanism had a faster route in
discovering the nearest road, with the time record
of 08:15:23 with format (mm:ss: ms), whereas the
Dijkstra algorithm with the time record of 34:47:43.
The reason was that multiple weighing on the nodes
could not be traversed. It caused the road cost
calculation process to be faster and more efficient.

The time record needed by NPC did not
represent the distance between NPC and the
discovery nodes, but it was the route discovery
process to the target. It could be seen in the Lag
process in a game before finding.

The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License



JURNAL RISET INFORMATIKA
Vol. 4, No. 3. June 2022

P-ISSN: 2656-1743 |E-ISSN: 2656-1735
DOLI: https://doi.org/10.34288/jri.v4i3.186

Accredited rank 3 (SINTA 3), excerpts from the decision of the Minister of RISTEK-BRIN No. 200/M/KPT /2020

Suggestion

Technically, the game-based RPG Maker
MV application, where the artificial intelligence
implemented was based on the author's source
code, might produce different results if testing the
other author. It needs improvement using other
applications, such as unity3D and game maker.

REFERENCES

Arikunto, S. (2006). Prosedur penelitian suatu
pendekatan praktik (1V). Jakarta: Penerbit PT
Rineka Cipta.

Chen, J. H., Shih, T. K, & Chen, J. Y. (2012). To
develop the ubiquitous adventure RPG (role
play game) game-based learning system.
Conference Proceedings - IEEE International
Conference on Systems, Man and Cybernetics,
2973-2978.
https://doi.org/10.1109/ICSMC.2012.63782
47

Hammedi, S., Essalmi, F.,, Jemni, M., & Qaffas, A. A.
(2020). An investigation of Al in games:

Educational intelligent games vs non-
educational games. Proceedings of 2020
International Multi-Conference on:

Organization of Knowledge and Advanced
Technologies, OCTA 2020. Institute of
Electrical and Electronics Engineers Inc.
https://doi.org/10.1109/0CTA49274.2020.9
151738

Harahap, M. K, & Khairina, N. (2017). Pencarian
Jalur Terpendek dengan Algoritma Dijkstra.
SinkrOn, 2(2), 18.
https://doi.org/10.33395/sinkron.v2i2.61

Huy, J., Gen Wan, W., & Yu, X. (2012). A pathfinding
algorithm in real-time strategy game based on
Unity3D. ICALIP 2012 - 2012 International
Conference on Audio, Language and Image

Processing, Proceedings, 1159-1162.
https://doi.org/10.1109/ICALIP.2012.63767
92

Igbal, M., & Rizwan, M. (2009). Application of 80/20
rule in software engineering Waterfall Model.
2009 International Conference on Information
and Communication Technologies, ICICT 2009,
223-228.
https://doi.org/10.1109/ICICT.2009.526718
6

Iskandar, U. A. S., Diah, N. M., & Ismail, M. (2020).
Identifying Artificial Intelligence Pathfinding
Algorithms for Platformer Games. 2020 IEEE
International Conference on Automatic Control
and Intelligent Systems, [2CACIS 2020 -

Proceedings, 74-80. Institute of Electrical and
Electronics Engineers Inc.
https://doi.org/10.1109/12CACIS49202.202
0.9140177

Maria, B., Hanna, P., & Yosefina, R. (2022).
Penerapan  algoritma  dijkstra  untuk
menentukan rute terpendek dari pusat kota
surabaya ke tempat bersejarah. Jurnal
Teknologi Dan Sistem Informasi Bisnis, 4(1),
213-223.
https://doi.org/10.47233/jteksis.v4i1.407

Rachmawati, D., & Gustin, L. (2020). Analysis of
Dijkstra's Algorithm and A+ Algorithm in
Shortest Path Problem. journal of Physics:
Conference Series, 1566(1), 012061. Institute
of Physics Publishing.
https://doi.org/10.1088/1742-
6596/1566/1/012061

Saravanan, T., Jha, S., Sabharwal, G., & Narayan, S.
(2020). Comparative Analysis of Software Life
Cycle Models. Proceedings - IEEE 2020 2nd
International Conference on Advances in
Computing, Communication Control and
Networking, ICACCCN 2020, 906-9009.
Institute of Electrical and Electronics
Engineers Inc.
https://doi.org/10.1109/ICACCCN51052.20
20.9362931

Sazaki, Y. Primanita, A.,, & Syahroyni, M. (2018).
Pathfinding car racing game using dynamic
pathfinding algorithm and algorithm Ax.
Proceedings - ICWT 2017: 3rd International
Conference on Wireless and Telematics 2017,
2017-July, 164-169. Institute of Electrical and

Electronics Engineers Inc.
https://doi.org/10.1109/ICWT.2017.828416
0

Sinha, A, & Das, P. (2021). Agile Methodology Vs.
Traditional Waterfall SDLC: A case study on
Quality Assurance process in Software
Industry. 2021 5th International Conference
on Electronics, Materials Engineering & Nano-

Technology (IEMENTech). Kolkata, India:
IEEE.
https://doi.org/10.1109/IEMENTech53263.
2021.9614779

Tang, C, Wang, Z. Sima, X, & Zhang, L. (2020).
Research on artificial intelligence algorithm
and its application in games. Proceedings -
2020 2nd International Conference on
Artificial ~ Intelligence  and  Advanced
Manufacture, AIAM 2020, 386-389. Institute
of Electrical and Electronics Engineers Inc.
https://doi.org/10.1109/AI1AM50918.2020.0
0085

Trivedi, P.,, & Sharma, A. (2013). A comparative

The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License



P-ISSN: 2656-1743 | E-ISSN: 2656-1735
DOI: https://doi.org/10.34288/jri.v4i3.186

JURNAL RISET INFORMATIKA
Vol. 4, No. 3 June 2022

Accredited rank 3 (SINTA 3), excerpts from the decision of the Minister of RISTEK-BRIN No. 200/M/KPT /2020

study between iterative waterfall and
incremental software development life cycle
model for optimizing the resources using
computer simulation. Proceedings of the 2013
2nd International Conference on Information
Management in the Knowledge Economy : 19-
20 December 2013. Punjab, India: Chitkara
University. Retrieved from
https://ieeexplore.ieee.org/abstract/docume
nt/6915096/authors#authors

Wahyuningsih, D., & Syahreza, E. (2018). Shortest

Path Search Futsal Field Location With
Dijkstra Algorithm. [JCCS (Indonesian Journal
of Computing and Cybernetics Systems), 12(2),
161-170.
https://doi.org/10.22146/1JCCS.34513

Waleed, S., Faizan, M., Igbal, M., & Anis, M. I. (2017).

Demonstration of single link failure recovery
using Bellman Ford and Dijikstra algorithm in
SDN. ICIEECT 2017 - International Conference
on Innovations in Electrical Engineering and
Computational Technologies 2017,
Proceedings.

https://doi.org/10.1109/ICIEECT.2017.7916

290

533

Zhao, M. (2020). Analysis on the connection

between nonplayer character and artificial
intelligence. Proceedings - 2020 International
Conference on Intelligent Computing and
Human-Computer Interaction, ICHCI 2020,
105-108.
https://doi.org/10.1109/1CHCI51889.2020.0
0030

The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License



