PUBLIC’S SENTIMENT ANALYSIS ON SHOPEE-FOOD SERVICE USING LEXICON-BASED AND SUPPORT VECTOR MACHINE
DOI:
https://doi.org/10.34288/jri.v4i1.129Keywords:
opinion, Twitter, sentiment analysis, lexicon-based, support vector machineAbstract
Technology field following how era keep evolving. Social media already on everyone’s daily life and being a place for writing their opinion, either review or response for product and service that already being used. Twitter are one of popular social media on Indonesia, according to Statista data it reach 17.55 million users. For online business sector, knowing sentiment score are really important to stepping up their business. The use of machine learning, NLP (Natural Processing Language), and text mining for knowing the real meaning of opinion words given by customer called sentiment analysis. Two methods are using for data testing, the first is Lexicon Based and the second is Support Vector Machine (SVM). Data source that used for sentiment analyst are from keyword ‘ShopeeFood’ and ‘syopifud’. The result of analysis giving accuracy score 87%, precision score 81%, recall score 75%, and f1-score 78%.
Downloads
References
Chazar, C., & Erawan, B. (2020). Machine Learning Diagnosis Kanker Payudara Menggunakan Algoritma Support Vector Machine. INFORMASI (Jurnal Informatika Dan Sistem Informasi), 12(1), 67–80. https://doi.org/10.37424/informasi.v12i1.48
Jiménez-Zafra, S. M., Cruz-Díaz, N. P., Taboada, M., & Martín-Valdivia, M. T. (2021). Negation detection for sentiment analysis: A case study in Spanish. Natural Language Engineering, 27(2), 225–248. https://doi.org/10.1017/S1351324920000376
Jinju, K., Seyoung, P., & Harrison, K. (2021). Analysis Of Customer Sentiment On Product Features After The Outbreak Of Coronavirus Disease (Covid-19) Based On Online Reviews. Proceedings of the Design Society, 1(August), 457–466. https://doi.org/10.1017/pds.2021.46
Li, W., Li, X., Deng, J., Wang, Y., & Guo, J. (2021). Sentiment based multi-index integrated scoring method to improve the accuracy of recommender system. Expert Systems with Applications, 179(March), 115105. https://doi.org/10.1016/j.eswa.2021.115105
Liu, C., Fang, F., Lin, X., Cai, T., Tan, X., Liu, J., & Lu, X. (2021). Improving sentiment analysis accuracy with emoji embedding. Journal of Safety Science and Resilience, 2(4), 246–252. https://doi.org/10.1016/j.jnlssr.2021.10.003
Mahendrajaya, R., Buntoro, G. A., & Setyawan, M. B. (2019). Analisis Sentimen Pengguna Gopay Menggunakan Metode Lexicon Based Dan Support Vector Machine. Komputek, 3(2), 52. https://doi.org/10.24269/jkt.v3i2.270
Marong, M., Raheem, M., Batcha, N. K., & Mafas, R. (2020). Sentiment Analysis in E-Commerce: A Review on The Techniques and Algorithms Blockchain View project Sentiment Analysis View project Sentiment Analysis in E-Commerce: A Review on The Techniques and Algorithms. Journal of Applied Technology and Innovation, 4(1), 6.
Najib, A. C., Irsyad, A., Qandi, G. A., & Rakhmawati, N. A. (2019). Perbandingan Metode Lexicon-based dan SVM untuk Analisis Sentimen Berbasis Ontologi pada Kampanye Pilpres Indonesia Tahun 2019 di Twitter. Fountain of Informatics Journal, 4(2), 41. https://doi.org/10.21111/fij.v4i2.3573
Pertiwi, A., Triayudi, A., & Handayani, E. T. E. (2020). Sentiment Analysis of the Impact of Covid-19 on Indonesia’s Economy through Social Media Using the ANN Method. Jurnal Mantik, 4(May), 605–612.
Pradopo, L. R., & Adhiansyah, R. M. (2019). Analis Strategi Kualitas Pelayanan untuk Peningkatan Rasa Kepuasan Konsumen pada PT Gojek (Studi Kasus Pelayanan Go Food). Journal of Information System, Applied, Management, Accounting and Research, 3(3), 27–32.
Rosdiana, Tungadi, E., Saharuna, Z., & Nur Yasir Utomo, M. (2019). Analisis Sentimen pada Twitter terhadap Pelayanan Pemerintah Kota Makassar. Proceedings Seminar Nasional Teknik Elektro Dan Informatika, 87–93.
Rustanto, I., & Rakhmawati, N. A. (2021). Media Sentiment Analysis of East Java Province: Lexicon-Based vs Machine Learning. IPTEK Journal of Proceedings Series, 0(6), 203–208.
Saidah, S., & Mayary, J. (2020). Analisis Sentimen Pengguna Twitter Terhadap Dompet Elektronik Dengan Metode Lexicon Based Dan K – Nearest Neighbor. Jurnal Ilmiah Informatika Komputer, 25(1), 1–17. https://doi.org/10.35760/ik.2020.v25i1.2411
Tineges, R., Triayudi, A., & Sholihati, I. D. (2020). Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM). JURNAL MEDIA INFORMATIKA BUDIDARMA, 4(3), 650. https://doi.org/10.30865/mib.v4i3.2181
Triayudi, A. (2019). Convolutional Neural Network For Test Classification On Twitter. Journal Software Engineering & Intelligent Systems, 4(3), 123–131.
Vania, I., & Simbolon, R. (2021). Pengaruh Promo ShopeeFood Terhadap Minat Beli Pengguna Shopee (Di Daerah Tangerang Selatan). Jurnal Ekonomis, 14(2b), 46–58.
Wilis, K., Himawan, H., & Silitonga, P. D. (2020). The Accuracy Comparison of Social Media Sentiment Analysis Using Lexicon Based and Support Vector Machine on Souvenir Recommendations. Test Engineering and Management, 82(3–4), 3953–3961.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Shafira Shalehanny, Agung Triayudi, Endah Tri Esti Handayani

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Jurnal Riset Informatika has legal rules for accessing digital electronic articles uunder a Creative Commons Attribution-NonCommercial 4.0 International License . Articles published in Jurnal Riset Informatika, provide Open Access, for the purpose of scientific development, research, and libraries.










